geometric representations
for computer-aided design
(from bezier splines to nurbs)

Jonathan Balzer UCLAVISIONLAB

motivation

typesetting

e of the two separate error terms $\#V(g_s, g_t)$ and $\#V(g_t)$. Note that a SLAM algorithm: At initializat pty, we have $V(g_t) = \emptyset; E_p =$ ivalent to the classical BA function age correspondence fails, $V(q_s, q)$

polygon meshes

cad

agenda

- foundations
 - vector spaces of polynomials
 - Stone-Weierstrass
- Bézier curves
 - Bernstein basis
 - de Casteljau algorithm
- B-splines
 - cardinal splines
 - nurbs
 - parametric surfaces
- demo: cad-representations in blender

foundations

vector spaces

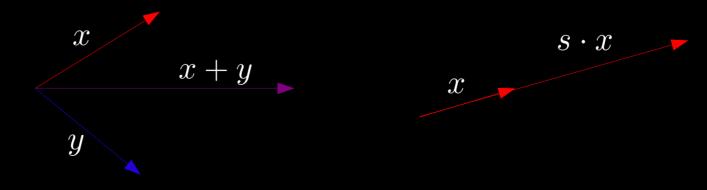
Definition 1.1. A real vector space is a set V such that for any two elements $x, y \in V$ and any $s \in \mathbb{R}$, the following identities hold:

(i)
$$x + y \in V$$
,
(ii) $s \cdot x \in V$.

Furthermore,

- (iii) (V, +) is an Abelian group,
- (iv) scalar multiplication is associative and distributive,

(v)
$$1 \cdot x = x$$
.

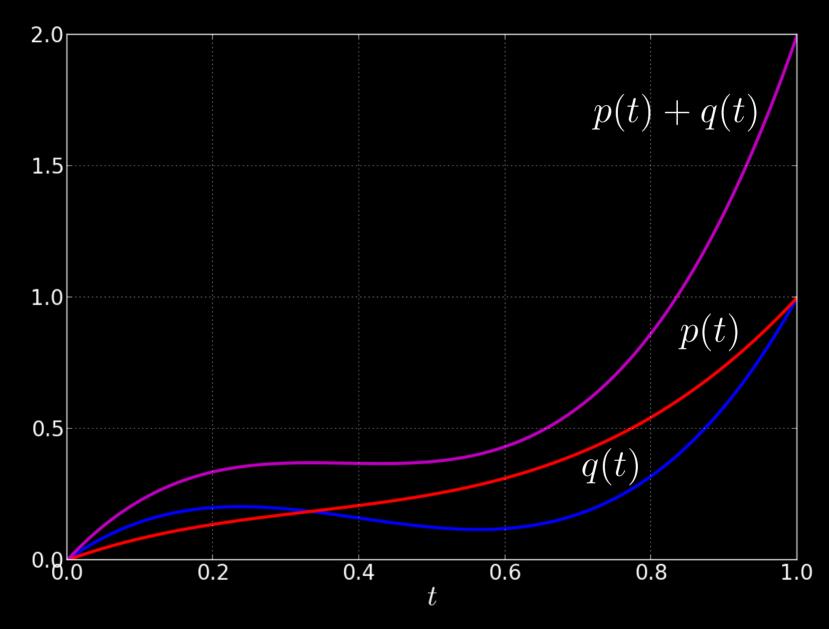


polynomials

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \ldots + a_1 t + a_0$$

- coefficients $a_i \in \mathbb{R}$
- degree $n \in \mathbb{N}$
- order o = n + 1 (number of coefficients)
- the vector space $P_n([0,1])$

additivity

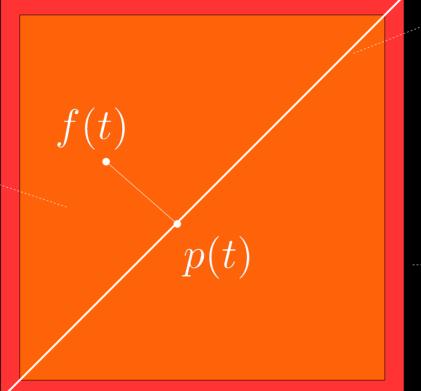


function approximation

Theorem 1.1 (Stone-Weierstrass). Suppose f is a continuous function defined on the interval [0, 1]. For every $\varepsilon > 0$, there exists a polynomial p over [0, 1] such that for all $t \in [0, 1]$, we have $|f(t) - p(t)| < \varepsilon$.

function approximation

$P_{\infty}([0,1])$



 $- C^0([0,1])$

Bézier curves

Pierre Bézier

- 9/1/1910 11/15/1989
- MSc Mechanichal Engineering, MSc Electrical Engineering
- PhD Mathematics
- 42 year tenure at Renault

renault r4

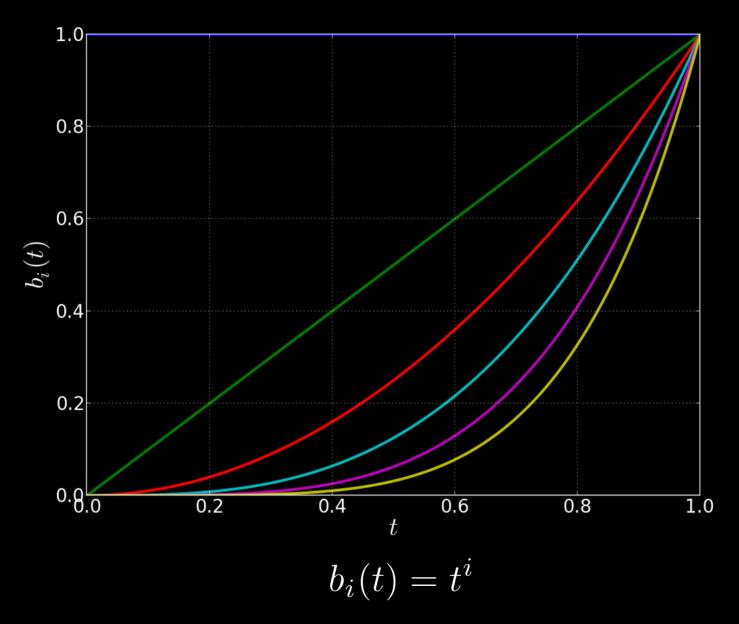
basis

• a set $\{b_1, \ldots, b_n\} \subset V$ s.t. any $x \in V$ can be written as

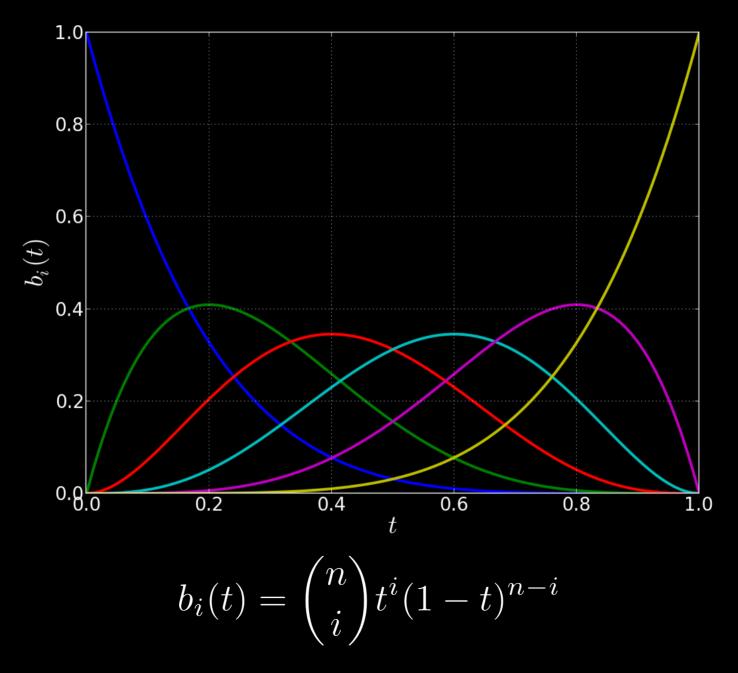
$$x = \sum_{i=1}^{n} c_i b_i, \quad c_i \in \mathbb{R}$$

• what about $P_n([0,1])$?

monomial basis



Bernstein basis



parametric curves

- map $c: [0,1] \rightarrow \mathbb{R}^d$ c(0) c(t) \mathbb{R}^d \mathbb{R} t \mathbb{R} t \mathbb{R} t c(1)
- Bézier representation:

$$\boldsymbol{c}(t) = \sum_{i=1}^{n} \boldsymbol{c}_{i} b_{i}(t), \quad \boldsymbol{c}_{i} \in \mathbb{R}^{d}$$

control points

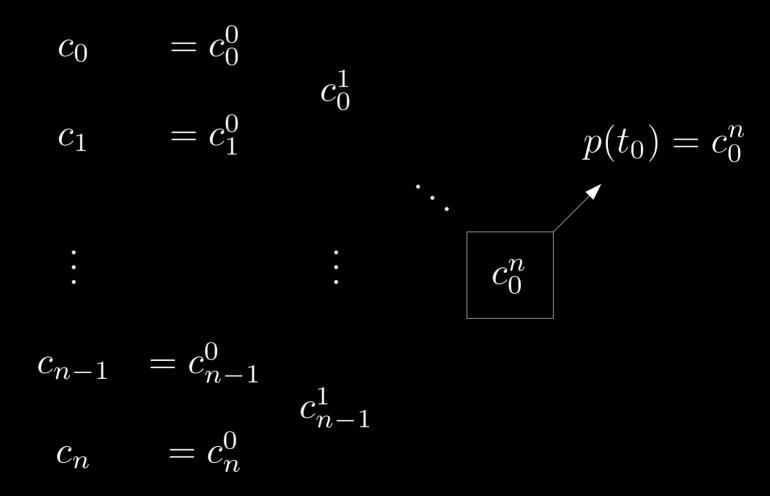
Paul de Casteljau

- born 11/19/1930
- french physicist and mathematician
- 34 years at Citroën

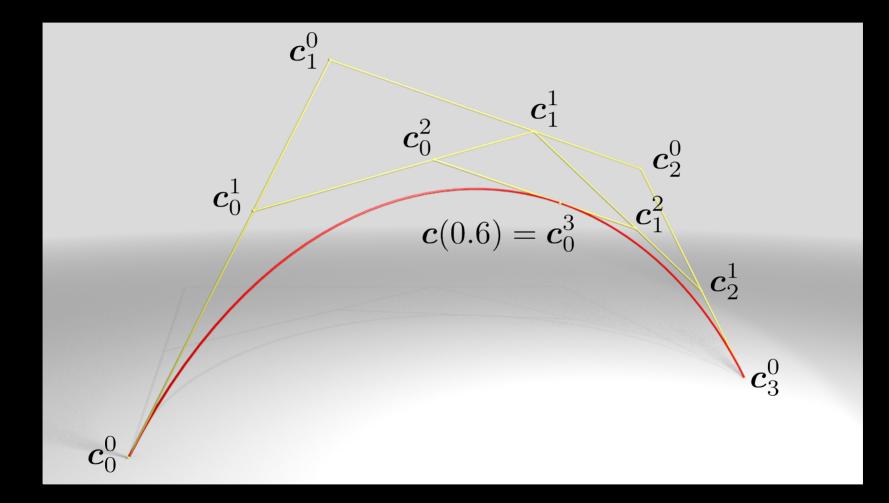
citroën ds

de Casteljau algorithm

• recursion: $c_i^k := c_i^{k-1}(1-t_0) + c_{i+1}^{k-1}t_0$



visualization $t_0 = 0.6$

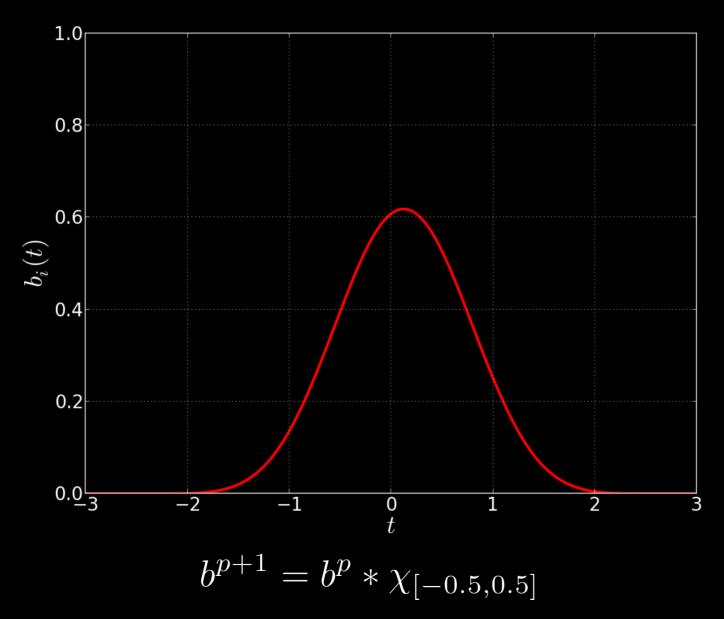


discussion

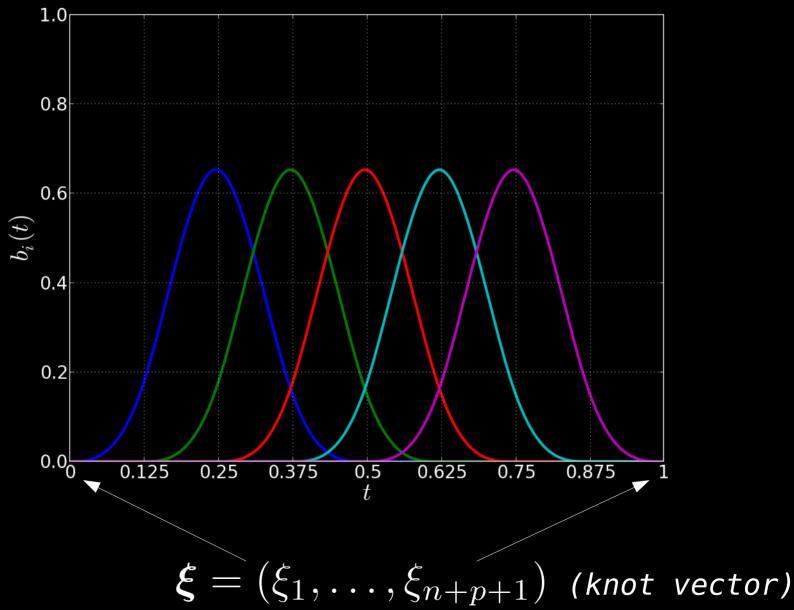
- global support
- approximation of "long" curves
- geometric continuity

B-splines

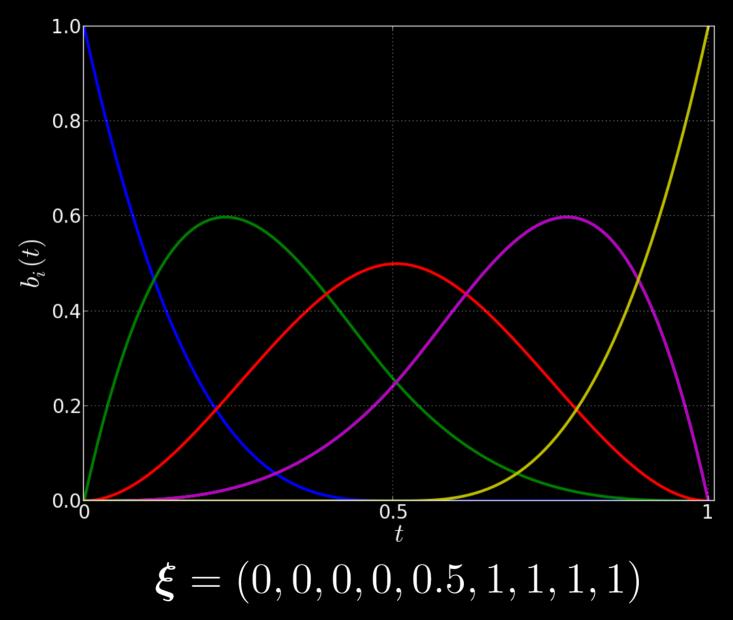
construction



the basis



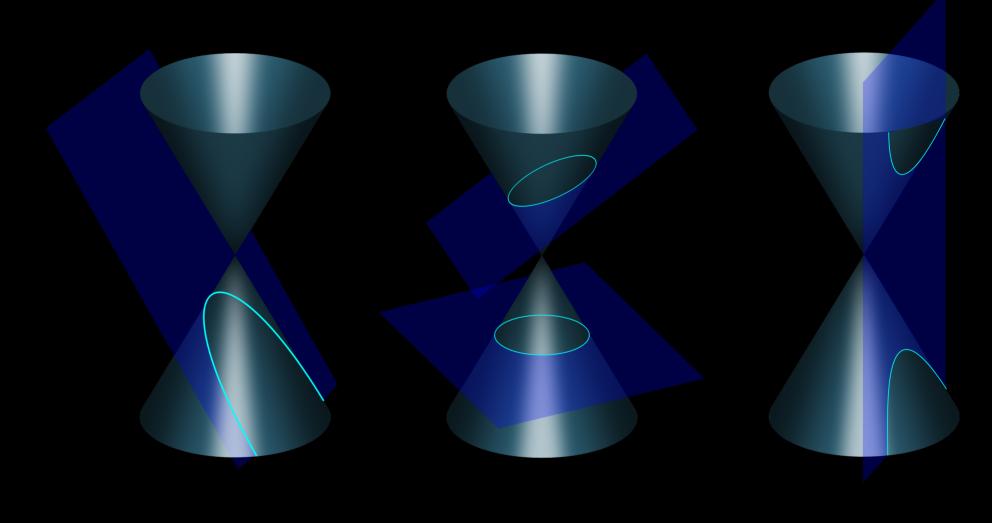
open knot vectors



Cox-de Boor algorithm

- recursive
- no convolutions needed
- knots as parameters
- generalization of de Casteljau's algorithm
- fast & numerically stable

conic sections



parabolic

elliptic

hyperbolic

a glimpse of nurbs

- non-uniform rational b-splines
- control points in \mathbb{P}_d
- in homogeneous coordinates:

$$\boldsymbol{c}_i = (x_i, y_i, z_i, w_i)^\top$$

- control points in \mathbb{R}^d weighted by the inverse of w_i

spline surfaces

- two coordinates (u,v)
- linear combination of bi-variate basis functions:

$$\mathbf{s}(u,v) = \sum_{k=1}^{m \cdot n} \mathbf{c}_k b_k(u,v)$$

basis by forming

 $b_k(u,v) = b_i(u)b_j(v), \quad i = 1, \dots, m, \ j = 1, \dots, n$ (tensor product)

tensor product basis

properties of splines

- linear precision
- convex hull property
- variation-diminishing
- affine invariance

some more blender

applications

