Numerical Optimization Exercise VII

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

Quadratic Programming

Equality-constrained case
Minimize $q: \mathbb{R}^{n} \mapsto \mathbb{R}$,

$$
q(x):=\frac{1}{2} \boldsymbol{x}^{\top} \mathbf{G} \boldsymbol{x}+\boldsymbol{c}^{\top} \boldsymbol{x}
$$

subject to $\mathbf{A x}=\boldsymbol{b}$, where

$$
\mathbf{G} \in \mathbb{R}^{n \times n}, \quad \boldsymbol{c} \in \mathbb{R}^{n}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{b} \in \mathbb{R}^{n}, \quad m<n,
$$

and \mathbf{A} has full row rank.

KKT system:

$$
\left(\begin{array}{cc}
\mathbf{G} & -\mathbf{A}^{\top} \\
\mathbf{A} & \mathbf{0}
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{\lambda}}=\binom{-\boldsymbol{c}}{\boldsymbol{b}}
$$

Quadratic Programming

Null space method:

- distinguish image and null space coordinates of solution:

$$
\boldsymbol{x}=\mathbf{Y} \boldsymbol{x}_{Y}+\mathbf{Z} \boldsymbol{x}_{Z}
$$

- feasible base point:

$$
\boldsymbol{x}_{Y}=(\mathbf{A} \mathbf{Y})^{-1} \boldsymbol{b}
$$

(from linear constraint)

Quadratic Programming

- Lagrange condition:

$$
\mathbf{G Z} x_{Z}=\mathbf{A}^{\top} \boldsymbol{\lambda}-\mathbf{G} \mathbf{Y} x_{Y}-\mathbf{c}
$$

- after multiplication with \mathbf{Z}^{\top} :
$\mathbf{Z}^{\top} \mathbf{G} \mathbf{Z} \boldsymbol{x}_{Z}=-\left(\mathbf{Z}^{\top} \mathbf{G} \mathbf{Y} \boldsymbol{x}_{\boldsymbol{Y}}+\mathbf{Z}^{\top} \boldsymbol{c}\right)$
since

$$
\mathbf{Z}^{\top} \mathbf{A}^{\top}=(\mathbf{A} \mathbf{Z})^{\top}=\mathbf{0}
$$

Quadratic Programming

Other interpretation:
Insert $\boldsymbol{x}=\mathbf{Y} \boldsymbol{x}_{Y}+\mathbf{Z} \boldsymbol{x}_{Z}$ into original to obtain reduced problem

$$
\min _{\boldsymbol{x}_{Z}} \frac{1}{2} \boldsymbol{x}_{Z}^{\top} \tilde{\mathbf{G}} \boldsymbol{x}_{Z}+\tilde{\boldsymbol{c}}^{\top} \boldsymbol{x}_{Z}
$$

with

$$
\tilde{\mathbf{G}}=\mathbf{Z}^{\top} \mathbf{G Z} \quad \text { and } \quad \tilde{\boldsymbol{c}}=\mathbf{Z}^{\top} \mathbf{G} \mathbf{Y} \boldsymbol{x}_{Y}+\mathbf{Z}^{\top} \boldsymbol{c}
$$

Consequences:

- equality-constrained problems can be converted into unconstrained ones
- inequality-constrained problems can be converted into equality-constrained ones (\hookrightarrow active set method)

Quadratic Programming

Active set method:

1. start with feasible point
2. solve problem in subset spanned by relevant constraints (working set)
3. if no blocking encountered, check KKT condition: terminate or deactivate constraint and go to 2 .

Quadratic Programming

4. else add blocking constraint to working set
5. continue with 2 .

Exercises

1. Consider the linear mapping $f: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}$ given by the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 3 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Find a basis of the null space $\operatorname{ker} \mathbf{A}$.

Exercises

2. Minimize $q: \mathbb{R}^{2} \mapsto \mathbb{R}$,

$$
q\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{2}
$$

subject to the constraint

$$
x_{1}+3 x_{2}=2
$$

by the null space method. Compare the result to the one obtained using the constraint to eliminate x_{1} from $q\left(x_{1}, x_{2}\right)$.

