Numerical Optimization

Exercise VI

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

Course Overview

1. fundamentals

- convergence rates
- numerical differentiation (finite differencing, AD)
- KKT condition
- convexity

2. unconstrained optimization

- gradient descent
- Newton (Hessian modification) and Quasi-Newton methods
- conjugate gradient method

3. line search

- Wolfe/Armijo/Goldstein conditions
- exact line search
- interpolation

Course Overview

4. trust-region methods

- Cauchy point
- minimization under quadratic norm constraint

5. least-squares problems

- linear
- nonlinear

6. linear programming

- simplex method
- interior point method

7. quadratic programming

- equality-constrained problems
- active set method
- interior point method
- SQP

Course Overview

Briefly:

8. penalty methods
9. interior points methods for nonlinear programming

Exercises

1. There are K power plants $P_{1} \ldots, P_{K}$ producing s_{k} gigawatts (GW) of electricity and L cities C_{1}, \ldots, C_{L}, each of which consumes $r_{l} G W$ thereof. Let $t_{k l}$ be the cost of transporting $1 G W$ of electricity from plant P_{k} to city C_{l}.
(i) Model the problem of how to meet the market requirements at minimal cost by a linear program.
(ii) Bring it to standard form assuming

$$
K=2, s_{1}=2, s_{2}=1, L=1, r_{1}=3, t_{11}=3, t_{21}=1
$$

Interior Point Methods

Idea:

- approach minimizer from inside the simplex
- solve nonlinear KKT system in ($\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}$) by constrained Newton method for root-finding

Problem:

- boundary reached too quickly
- revert to active set method

Interior Point Methods

Why call it "primal-dual method"?
Recall:

$$
F(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}):=\left(\begin{array}{c}
\mathbf{A}^{\top} \boldsymbol{\lambda}+\boldsymbol{s}-\boldsymbol{c} \\
\mathbf{A x}-\boldsymbol{b} \\
\mathbf{X S e}
\end{array}\right)
$$

- $F(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s})$ involves primal and dual variables
- if all iterates strictly feasible, i.e.
- $\mathbf{A}^{\top} \boldsymbol{\lambda}_{k}+\boldsymbol{s}_{k}-\boldsymbol{c}=\mathbf{0}$,
- $\mathbf{A x}_{k}-\boldsymbol{b}=\mathbf{0}$,
- $\boldsymbol{x}_{k}>\mathbf{0}$, and $\boldsymbol{s}_{k}>\mathbf{0}$,
then duality gap $\boldsymbol{x}^{\top} \boldsymbol{s} \rightarrow 0$ implies $F(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}) \rightarrow \mathbf{0}$

Interior Point Methods

Newton equation for feasible point:

$$
\begin{aligned}
& \quad\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{A}^{\top} & \mathbf{1} \\
\mathbf{A} & \mathbf{0} & \mathbf{0} \\
\mathbf{S}_{k} & \mathbf{0} & \mathbf{X}_{k}
\end{array}\right)\left(\begin{array}{c}
\triangle \boldsymbol{x}_{k} \\
\triangle \boldsymbol{\lambda}_{k} \\
\triangle \boldsymbol{s}_{k}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
-\mathbf{X}_{k} \mathbf{S}_{k} \boldsymbol{e}
\end{array}\right) \\
& \Rightarrow \triangle \boldsymbol{x}_{k} \in \operatorname{ker} \mathbf{A} \text { and }\left(\triangle \boldsymbol{\lambda}_{k}, \triangle \boldsymbol{s}_{k}\right) \in \operatorname{ker}\left(\mathbf{A}^{\top} \quad \mathbf{I}\right)
\end{aligned}
$$

In other words: if $\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{s}_{k}\right)$ also ($\boldsymbol{x}_{k+1}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{s}_{k+1}$) primal-dual-feasible, but what about $\boldsymbol{x}, \boldsymbol{s}>\mathbf{0}$?

Interior Point Methods

- log-barrier modification:

$$
\min _{x}\left\{\boldsymbol{c}^{\top} \boldsymbol{x}-\tau \sum_{i=1}^{n} \ln x_{i}\right\}
$$

subject to equality constraint

$$
A x=b
$$

- zeros of

$$
F_{\tau}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}):=\left(\begin{array}{c}
\mathbf{A}^{\top} \boldsymbol{\lambda}+\boldsymbol{s}-\boldsymbol{c} \\
\mathbf{A} \boldsymbol{x}-\boldsymbol{b} \\
\mathbf{X S e}-\tau \boldsymbol{e}
\end{array}\right)
$$

KKT points of augmented problem

Interior Point Methods

- obvious:

$$
\lim _{\tau \rightarrow 0} F_{\tau}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s}) \rightarrow F(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{s})
$$

- choose $\tau=\sigma \mu$:
- centering parameter $\sigma \in[0,1]$
- $\sigma=0: F_{\tau}=F$
- $\sigma=1$: forces $x_{1} s_{1}=\ldots=x_{n} s_{n}$
- duality gap

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} x_{i} s_{i} \rightarrow 0
$$

whenever $0<\sigma<1$

