Numerical Optimization
 Exercise V

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

The Simplex Method

Linear program in standard form
Minimize $f: \mathbb{R}^{n} \mapsto \mathbb{R}$,

$$
f(\boldsymbol{x})=\boldsymbol{c}^{\top} \boldsymbol{x}
$$

subject to $\boldsymbol{A x}=\boldsymbol{b}$ and $\boldsymbol{x} \geq 0$, where

$$
\mathbf{A} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{b} \in \mathbb{R}^{n}, \quad \boldsymbol{c} \in \mathbb{R}^{n}, \quad m<n
$$

and \mathbf{A} has full row rank.
Definition (Simplex)
The set

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{x}_{i}, \sum_{i=1}^{d} \lambda_{i}=1, \boldsymbol{\lambda} \geq 0, \boldsymbol{x}_{i} \in \mathbb{R}^{n}\right\}
$$

is called d-dimensional simplex, $d \in\{0, \ldots, n-1\}$, or simply d-simplex.

The Simplex Method

So why the name "simplex method"?
Rows of \mathbf{A} define hyperplanes in \mathbb{R}^{n}. Their intersection restricted to the positive orthant, i.e. the feasible region, is an n - m-simplex (if non-empty and bounded).

Example: $n=3$

- $m=1$: Picture the infeasible and unbounded case!

The Simplex Method

- $m=2$: If both planes are not entirely infeasible, intersection non-empty due to rank assumption.

- $m=3$: At most one feasible point if \mathbf{A} has full row rank \Rightarrow problem trivial.

The Simplex Method

Standard simplex gives standard example:

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right),
$$

$$
\boldsymbol{b}=1
$$

$$
\boldsymbol{c}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
$$

The Simplex Method

A step-by-step recipe:

1. Start on face of positive orthant, say in the $x_{1} x_{3}$-plane:

$$
\begin{aligned}
& \mathcal{B}=\{1\}, \quad \mathcal{N}=\{2,3\}, \\
& B \mathbf{B}=1, \quad \mathbf{N}=\left(\begin{array}{ll}
1 & 1
\end{array}\right), \\
& \boldsymbol{x}_{B}=x_{1}=\mathbf{B}^{-1} \boldsymbol{b}=1, \quad \boldsymbol{x}_{N}=\binom{x_{2}}{x_{3}}=\binom{0}{0} .
\end{aligned}
$$

The Simplex Method

2. Dual variables $\boldsymbol{\lambda}$, \boldsymbol{s} from

- complementary slackness $\boldsymbol{s}^{\top} \boldsymbol{x}=0$

$$
\boldsymbol{s}_{B}=s_{1}=0
$$

- Lagrange condition $\mathbf{A}^{\top} \boldsymbol{\lambda}+\boldsymbol{s}=\boldsymbol{c}$:

$$
\begin{aligned}
& \boldsymbol{\lambda}=\mathbf{B}^{-\top} \boldsymbol{c}_{B}=c_{1}=0, \\
& \boldsymbol{s}_{N}=\boldsymbol{c}_{N}-\mathbf{N}^{\top} \boldsymbol{\lambda}=\binom{0}{-1}
\end{aligned}
$$

The Simplex Method

3. If $\boldsymbol{s} \geq \mathbf{0}$, terminate, else select entering index, here $q=3$.
4. Deactivate $x_{q} \geq 0$: Increase x_{q} in \boldsymbol{x}_{N} by "decreasing" \boldsymbol{x}_{B} in the direction

$$
\boldsymbol{d}=\mathbf{B}^{-1} \mathbf{A}_{q}=1
$$

(coupling due to $\mathbf{A x}=\boldsymbol{b}$).

The Simplex Method

5. Let $j \in\{1, \ldots,|\mathcal{B}|\}$ be the row index of \boldsymbol{x}_{B}, for which 0 is reached first, i.e. $x_{B, j}-\alpha d_{j}=0$ for some $\alpha \in \mathbb{R}$. Turns out that

$$
\alpha=\min _{i \in\{1, \ldots,|\mathcal{B}|\}} \frac{x_{B, i}}{d_{i}}=1=x_{q}
$$

so that

$$
\boldsymbol{x}_{B}^{+}=1-1=0, \quad \boldsymbol{x}_{N}^{+}=\binom{0}{1}
$$

6. Map j to leaving index p, update

$$
\begin{aligned}
& \mathcal{B}=\{p\}=\{3\}, \quad \mathcal{N}=\{q, 2\}=\{1,2\}, \\
& \mathbf{B}=1, \quad \mathbf{N}=\left(\begin{array}{ll}
1 & 1
\end{array}\right), \\
& \boldsymbol{x}_{B}=x_{q}=x_{3}=1, \quad \boldsymbol{x}_{N}=\binom{x_{2}}{x_{p}}=\binom{x_{2}}{x_{1}}=\binom{0}{0}
\end{aligned}
$$

(switch x_{p} in \boldsymbol{x}_{B}^{+}and x_{q} in \boldsymbol{x}_{N}^{+}), and continue with 2.

Exercises

1. Consider the linear program $\min -5 x_{1}-x_{2}$ subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 5 \\
2 x_{1}+\frac{1}{2} x_{2} & \leq 8 \\
\boldsymbol{x} & \geq \mathbf{0} .
\end{aligned}
$$

(i) Bring it to standard form.
(ii) Use the simplex method to solve it.

