Numerical Optimization

Exercise IV

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

Exercises

1. Given m tuples $\left(t_{k}, \boldsymbol{c}_{k}\right), k=1, \ldots, m$, with $t_{k} \in \mathbb{R}$ and $\boldsymbol{c}_{k} \in \mathbb{R}^{d}$. Find the parametrized monomial curve

$$
\boldsymbol{c}(t)=\sum_{i=0}^{n} \boldsymbol{p}_{i} t^{i}
$$

of degree n which best approximates the $\boldsymbol{c}\left(t_{k}\right)=\boldsymbol{c}_{k}$ in a least-squares sense.

Exercises

2. Parametrize

$$
\Phi:=\left\{\boldsymbol{x}=(x, y, z)^{\top} \mid 1-x^{2}-y^{2}-z^{2}=0, z \geq 0\right\}
$$

by stereographic projection and find the point on Φ which is closest to $\tilde{x}=(0,0,2)^{\top}$ by the Gauss-Newton method.

Exercises

3. Modify Φ to

$$
\Phi_{f}=\left\{\boldsymbol{x}=(x, y, z)^{\top} \mid 1-x^{2}-y^{2}-z^{2} \geq 0, z \geq 0\right\}
$$

and regard it as the feasible region of a constrained optimization problem. Calculate the
(i) active sets of $\boldsymbol{x}_{0}=\mathbf{0}, \boldsymbol{x}_{1}=(1 / 4,0,1 / 2)^{\top}$ and $\boldsymbol{x}_{2}=(1,0,0)$,
(ii) tangent cone $T\left(\boldsymbol{x}_{2}\right)$,
(iii) and set of feasible directions $\mathcal{F}\left(\boldsymbol{x}_{0}\right)$.

The Karush-Kuhn-Tucker (KKT) Condition

Theorem

Let \boldsymbol{x}^{*} be a local solution of the canonical constrained minimization problem. If linear independence constraint qualification holds in \boldsymbol{x}^{*}, then there exists a Langrangian multiplier vector $\boldsymbol{\lambda}^{*}$ such that:

$$
\begin{equation*}
\nabla_{\boldsymbol{x}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\mathbf{0} \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
c_{i}\left(x^{*}\right)=0 \quad \forall i \in \mathcal{E}, \quad c_{i}\left(x^{*}\right) \geq 0 \quad \forall i \in \mathcal{I} \tag{1b}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{i}^{*} \geq 0 \quad \forall i \in \mathcal{I} \tag{1c}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{i}^{*} c_{i}\left(\boldsymbol{x}^{*}\right)=0 . \tag{1d}
\end{equation*}
$$

The Karush-Kuhn-Tucker (KKT) Condition

Essence of proof.

1. $\nabla f\left(\boldsymbol{x}^{*}\right)^{\top} \boldsymbol{d} \geq 0$ for all $\boldsymbol{d} \in T\left(\boldsymbol{x}^{*}\right)=\mathcal{F}\left(\boldsymbol{x}^{*}\right)$.
2. Farkas: ∇f is in cone spanned by $\nabla c_{i}, i \in \mathcal{A}\left(\boldsymbol{x}^{*}\right) \Rightarrow(1 \mathrm{a})$.
3. \boldsymbol{x}^{*} feasible $\Rightarrow(1 \mathrm{~b})$.
4. Set $\lambda_{i}^{*}=0$ for all $i \in \mathcal{I} \backslash \mathcal{A}\left(\boldsymbol{x}^{*}\right) \Rightarrow(1 \mathrm{c})$, (1d).

Definition

The condition $\lambda_{i}^{*}>0$ for each $i \in \mathcal{A}\left(\boldsymbol{x}^{*}\right) \cap \mathcal{I}$ is called strict complementarity.

