Numerical Optimization Exercise IV

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Exercises

1. Given *m* tuples (t_k, \boldsymbol{c}_k) , k = 1, ..., m, with $t_k \in \mathbb{R}$ and $\boldsymbol{c}_k \in \mathbb{R}^d$. Find the parametrized monomial curve

$$\boldsymbol{c}(t) = \sum_{i=0}^{n} \boldsymbol{p}_{i} t^{i}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

of degree *n* which best approximates the $c(t_k) = c_k$ in a least-squares sense.

Exercises

2. Parametrize

$$\Phi := \{ \boldsymbol{x} = (x, y, z)^\top \mid 1 - x^2 - y^2 - z^2 = 0, z \ge 0 \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

by stereographic projection and find the point on Φ which is closest to $\tilde{x} = (0, 0, 2)^{\top}$ by the Gauss-Newton method.

Exercises

3. Modify Φ to

$$\Phi_f = \{ \boldsymbol{x} = (x, y, z)^\top \mid 1 - x^2 - y^2 - z^2 \ge 0, z \ge 0 \}$$

and regard it as the feasible region of a constrained optimization problem. Calculate the

(i) active sets of $\boldsymbol{x}_0 = \boldsymbol{0}$, $\boldsymbol{x}_1 = (1/4, 0, 1/2)^\top$ and $\boldsymbol{x}_2 = (1, 0, 0)$,

- (ii) tangent cone $T(\mathbf{x}_2)$,
- (iii) and set of feasible directions $\mathcal{F}(\mathbf{x}_0)$.

The Karush-Kuhn-Tucker (KKT) Condition

Theorem

Let \mathbf{x}^* be a local solution of the canonical constrained minimization problem. If linear independence constraint qualification holds in \mathbf{x}^* , then there exists a Langrangian multiplier vector λ^* such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(1a)
$$\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{0},$$

(1b)
$$c_i(\boldsymbol{x}^*) = 0 \quad \forall i \in \mathcal{E}, \quad c_i(\boldsymbol{x}^*) \ge 0 \quad \forall i \in \mathcal{I},$$

(1c) $\lambda_i^* \ge 0 \quad \forall i \in \mathcal{I},$

(1d)
$$\lambda_i^* c_i(\boldsymbol{x}^*) = 0.$$

The Karush-Kuhn-Tucker (KKT) Condition

Essence of proof.

- 1. $\nabla f(\mathbf{x}^*)^{\top} \mathbf{d} \geq 0$ for all $\mathbf{d} \in T(\mathbf{x}^*) = \mathcal{F}(\mathbf{x}^*)$.
- 2. Farkas: ∇f is in cone spanned by ∇c_i , $i \in \mathcal{A}(\mathbf{x}^*) \Rightarrow (1a)$.

3.
$$\mathbf{x}^*$$
 feasible \Rightarrow (1b).

4. Set
$$\lambda_i^*=0$$
 for all $i\in\mathcal{I}\setminus\mathcal{A}({m{x}}^*)\Rightarrow$ (1c), (1d).

Definition

The condition $\lambda_i^* > 0$ for each $i \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I}$ is called *strict complementarity*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで