Numerical Optimization Exercise III

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

CG method in a nutshell I

Cayley-Hamilton tells us:

$$p_{c}^{n}(\mathbf{A}) = \mathbf{A}^{0} + \alpha_{0}\mathbf{A} + \dots \alpha_{n-1}\mathbf{A}^{n} = \mathbf{0} \in \mathbb{R}^{n \times n}$$

$$\Leftrightarrow \quad \mathbf{A}^{-1} = -\alpha_{0}\mathbf{I} - \alpha_{2}\mathbf{A} - \dots - \alpha_{n-1}\mathbf{A}^{n-1} =: p^{n-1}(\mathbf{A})$$

The "path" from x_0 to the solution x^* can be decomposed into a finite number of "segments"

$$\mathbf{x}^* - \mathbf{x}_0 = \mathbf{A}^{-1}(\mathbf{b} - \mathbf{A}\mathbf{x}_0) = p^{n-1}(\mathbf{A})\mathbf{r}_0$$

or more generally

$$\mathbf{x}^* - \mathbf{x}_0 \in \operatorname{span}\{\mathbf{r}_0, \mathbf{A}\mathbf{r}_0, \dots, \mathbf{A}^{n-1}\mathbf{r}_0\} = \mathcal{K}_n(\mathbf{A}, \mathbf{r}_0)$$

(*Krylov space* of dimension *n*)

Solution of $\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow$ finding a favorable basis in $\mathcal{K}_n(\mathbf{A}, \mathbf{r}_0)$, step sizes $\alpha_k =$ coefficients in this basis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CG method in a nutshell II

Idea:

Build basis iteratively by **A**-orthogonalization of residuals r_k !

Updating the descent direction:

- 1. actual **A**-orthogonal basis $B_{k-1} = \{ \boldsymbol{p}_0, \dots, \boldsymbol{p}_{k-1} \}$
- 2. $p_k = -r_k$ and hence $B_k = \{p_0, ..., p_{k-1}, -r_k\}$
- 3. Gram-Schmidt:

$$\boldsymbol{p}_k = -\boldsymbol{r}_k + \sum_{i=0}^{k-1} \underbrace{\boldsymbol{r}_k^{\top} \boldsymbol{A} \boldsymbol{p}_i}_{\beta_{i+1}} \boldsymbol{p}_i$$

Trick: Pre-multiply by $\boldsymbol{p}_{k-1}^{\top} \boldsymbol{\mathsf{A}}$ so that

$$0 =: -\boldsymbol{p}_{k-1}^{\top} \mathbf{A} \boldsymbol{r}_k + \beta_k \boldsymbol{p}_{k-1}^{\top} \mathbf{A} \boldsymbol{p}_{k-1}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

from which β_k is obtained easily.

1. Given a vector $\mathbf{v} = (0, 1, 0)^{\top}$. Calculate a vector \mathbf{v}^{\perp} which is **A**-orthogonal to \mathbf{v} with respect to

$$\mathbf{A} = \left(\begin{array}{rrr} 4 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

2. Consider the matrix

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

(i) Find a basis in which **A** has diagonal form to show that it fails to be positive definite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 (ii) Construct a matrix E such that A + E has only strictly positive eigenvalues.

3. Given the function, $f : \mathbb{R}^3 \mapsto \mathbb{R}$,

$$f(x_1, x_2, x_3) = \exp(x_1 x_2) + \frac{x_2^2}{x_3 - 1}$$

a point
$$\boldsymbol{x} = (0, 2, 3)^\top \in \mathbb{R}^3$$
 and a direction $\boldsymbol{p} = (-1, 1, -1)^\top \in \mathbb{R}^3$.

(i) Construct the computational graph of f.

(ii) Evaluate $f(\mathbf{x})$ recording all intermediate values in the graph.

(iii) Calculate $\nabla f(\mathbf{x})$ by AD in reverse mode and $\nabla f(\mathbf{x})^{\top} \mathbf{p}$ in forward mode.

Convex functions revisited

• $f : \mathbb{R}^n \supseteq \Omega \mapsto \mathbb{R}$ convex if Ω is convex and

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for all $x, y \in \Omega$ and $\lambda \in [0, 1]$

f strictly convex if above inequality is strict

•
$$f$$
 concave $\Leftrightarrow -f$ convex

Conditions for convexity

• first-order condition ($f \in C^1$ and Ω convex):

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

• second-order condition ($f \in C^2$ and Ω convex):

 $\nabla^2 f \ge 0$

Convexity preserving operations

1. restriction to affine spaces: $f : \mathbb{R}^n \mapsto \mathbb{R}$ convex iff

$$g(t) := f(\boldsymbol{x}_0 + t\boldsymbol{v})$$

convex in t for any $\mathbf{x}_0 \in \Omega, \mathbf{v} \in \mathbb{R}^n$

- 2. affine transformations: if f(x) is convex so is f(Ax + t) for any $A \in \mathbb{R}^{n \times n}$ and $t \in \mathbb{R}^n$
- 3. scaling: αf convex if f convex and $\alpha \in \mathbb{R}_{\geq 0}$
- 4. sum: $f_1, f_2 \text{ convex} \Rightarrow f_1 + f_2 \text{ convex}$
- 5. pointwise maximum: f_1, \ldots, f_m convex \Rightarrow $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), \ldots, f_m(\mathbf{x})\}$ convex
- 6. composition: g convex, h convex and non-decreasing \Rightarrow $f = h \circ g(\mathbf{x})$ convex

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

4.

(i) Show that $f(x) = \exp(-x)$ is convex but $f(x) = \exp(-x^2)$ is not.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

(ii) Proof statements 3. and 4. from above.