Numerical Optimization

Exercise III

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

CG method in a nutshell I

Cayley-Hamilton tells us:

$$
\begin{aligned}
p_{\mathrm{c}}^{n}(\mathbf{A}) & =\mathbf{A}^{0}+\alpha_{0} \mathbf{A}+\ldots \alpha_{n-1} \mathbf{A}^{n}=\mathbf{0} \in \mathbb{R}^{n \times n} \\
& \Leftrightarrow \quad \mathbf{A}^{-1}=-\alpha_{0} \mathbf{I}-\alpha_{2} \mathbf{A}-\ldots-\alpha_{n-1} \mathbf{A}^{n-1}=: p^{n-1}(\mathbf{A})
\end{aligned}
$$

The "path" from \boldsymbol{x}_{0} to the solution \boldsymbol{x}^{*} can be decomposed into a finite number of "segments"

$$
\boldsymbol{x}^{*}-\boldsymbol{x}_{0}=\mathbf{A}^{-1}\left(\boldsymbol{b}-\mathbf{A} \boldsymbol{x}_{0}\right)=p^{n-1}(\mathbf{A}) \boldsymbol{r}_{0}
$$

or more generally

$$
\boldsymbol{x}^{*}-\boldsymbol{x}_{0} \in \operatorname{span}\left\{\boldsymbol{r}_{0}, \mathbf{A} \boldsymbol{r}_{0}, \ldots, \mathbf{A}^{n-1} \boldsymbol{r}_{0}\right\}=\mathcal{K}_{n}\left(\mathbf{A}, \boldsymbol{r}_{0}\right)
$$

(Krylov space of dimension n)
Solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow$ finding a favorable basis in $\mathcal{K}_{n}\left(\mathbf{A}, \boldsymbol{r}_{0}\right)$, step sizes $\alpha_{k}=$ coefficients in this basis

CG method in a nutshell II

Idea:
Build basis iteratively by \mathbf{A}-orthogonalization of residuals $\boldsymbol{r}_{\boldsymbol{k}}$!
Updating the descent direction:

1. actual A-orthogonal basis $B_{k-1}=\left\{\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{k-1}\right\}$
2. $\boldsymbol{p}_{\boldsymbol{k}}=-\boldsymbol{r}_{k}$ and hence $B_{k}=\left\{\boldsymbol{p}_{0}, \ldots, \boldsymbol{p}_{k-1},-\boldsymbol{r}_{k}\right\}$
3. Gram-Schmidt:

$$
\boldsymbol{p}_{k}=-\boldsymbol{r}_{k}+\sum_{i=0}^{k-1} \underbrace{\boldsymbol{r}_{k}^{\top} \boldsymbol{A}_{i}}_{\beta_{i+1}} \boldsymbol{p}_{i}
$$

Trick: Pre-multiply by $\boldsymbol{p}_{k-1}^{\top} \mathbf{A}$ so that

$$
0=:-\boldsymbol{p}_{k-1}^{\top} \mathbf{A} \boldsymbol{r}_{k}+\beta_{k} \boldsymbol{p}_{k-1}^{\top} \mathbf{A} \boldsymbol{p}_{k-1}
$$

from which β_{k} is obtained easily.

Exercises

1. Given a vector $\boldsymbol{v}=(0,1,0)^{\top}$. Calculate a vector \boldsymbol{v}^{\perp} which is A-orthogonal to \mathbf{v} with respect to

$$
\mathbf{A}=\left(\begin{array}{lll}
4 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right)
$$

Exercises

2. Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

(i) Find a basis in which \mathbf{A} has diagonal form to show that it fails to be positive definite.
(ii) Construct a matrix \mathbf{E} such that $\mathbf{A}+\mathbf{E}$ has only strictly positive eigenvalues.

Exercises

3. Given the function, $f: \mathbb{R}^{3} \mapsto \mathbb{R}$,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\exp \left(x_{1} x_{2}\right)+\frac{x_{2}^{2}}{x_{3}-1}
$$

a point $\boldsymbol{x}=(0,2,3)^{\top} \in \mathbb{R}^{3}$ and a direction $\boldsymbol{p}=(-1,1,-1)^{\top} \in \mathbb{R}^{3}$.
(i) Construct the computational graph of f.
(ii) Evaluate $f(\boldsymbol{x})$ recording all intermediate values in the graph.
(iii) Calculate $\nabla f(\boldsymbol{x})$ by AD in reverse mode and $\nabla f(\boldsymbol{x})^{\top} \boldsymbol{p}$ in forward mode.

Convex functions revisited

- $f: \mathbb{R}^{n} \supseteq \Omega \mapsto \mathbb{R}$ convex if Ω is convex and

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$ and $\lambda \in[0,1]$

- f strictly convex if above inequality is strict
- f concave $\Leftrightarrow-f$ convex

Conditions for convexity

- first-order condition ($f \in C^{1}$ and Ω convex):

$$
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{\top}(\boldsymbol{y}-\boldsymbol{x})
$$

- second-order condition ($f \in C^{2}$ and Ω convex):

$$
\nabla^{2} f \geq 0
$$

Convexity preserving operations

1. restriction to affine spaces: $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ convex iff

$$
g(t):=f\left(x_{0}+t \boldsymbol{v}\right)
$$

convex in t for any $\boldsymbol{x}_{0} \in \Omega, \boldsymbol{v} \in \mathbb{R}^{n}$
2. affine transformations: if $f(\boldsymbol{x})$ is convex so is $f(\mathbf{A} \boldsymbol{x}+\boldsymbol{t})$ for any $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{t} \in \mathbb{R}^{n}$
3. scaling: αf convex if f convex and $\alpha \in \mathbb{R}_{\geq 0}$
4. sum: f_{1}, f_{2} convex $\Rightarrow f_{1}+f_{2}$ convex
5. pointwise maximum: f_{1}, \ldots, f_{m} convex \Rightarrow $f(\boldsymbol{x})=\max \left\{f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right\}$ convex
6. composition: g convex, h convex and non-decreasing \Rightarrow $f=h \circ g(x)$ convex

Exercises

4.

(i) Show that $f(x)=\exp (-x)$ is convex but $f(x)=\exp \left(-x^{2}\right)$ is not.
(ii) Proof statements 3. and 4. from above.

