Numerical Optimization Exercise I

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

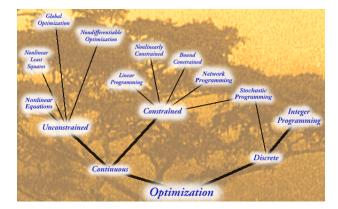
Some terminology

- variables, objective function
- constrained optimization: (in)equality constraints, feasible set

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- discrete vs. continuous optimization
- local vs. global optimization
- stochastic vs. deterministic optimization
- convex vs. nonconvex optimization
- strong, weak, isolated optima

The optimization tree



Source: http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/index.html

Concepts of local optimization

Theorem (Taylor in 1D)

Given a function $f : \mathbb{R} \mapsto \mathbb{R}$. Suppose that in an open interval containing x_0 , f is continuously differentiable n + 1 times, then for each x in this interval

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_{n+1}(x),$$

where the error term $R_{n+1}(x)$ satisfies

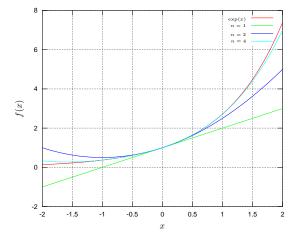
$$R_{n+1}(x) = \frac{f^{(k)}(\xi)}{k!}(x-x_0)^k$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for some $\xi \in [x_0, x)$.

Concepts of local optimization

Example:



 $\exp(x) \approx 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{4}x^4$ around $x_0 = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Concepts of local optimization

Basic idea:

Construct sequence $\{x_k\}$ of points in feasible set such that objective function $f(x_k)$ decreases (monotonically) as $k \to \infty$.

Two strategies:

- Line search
 - descent direction fixed (per iteration): negative gradient, Newton step, Quasi-Newton step, conjugate directions
 - distance variable \Rightarrow one-dimensional subproblem
- Trust region
 - direction variable
 - maximal distance = size of trust region fixed (per iteration)

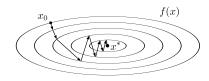
Conditions of optimality

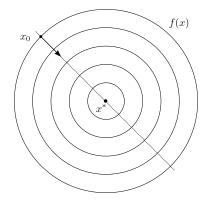
Convention: optimization = minimization

- necessary:
 - x^* stationary \Leftrightarrow " $f'(x^*) = 0$ "
 - Hessian positive semidefinite \Leftrightarrow " $f''(x^*) \ge 0$ "
- sufficient:
 - Hessian positive definite \Leftrightarrow " $f''(x^*) > 0$ " (x^* strong)

f and feasibility region convex (x* global)

Scaling





better

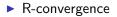
Rates of Convergence

Q-convergence

sublinear, superlinear

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- quadratic
- ▶ ...



1. Are the following matrices positive definite or positive semidefinite?

(i)
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

(ii) $\mathbf{B} = \begin{pmatrix} 3 & 5 \\ 12 & 20 \end{pmatrix}$
(iii) $\mathbf{C} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

2. Compute gradient and Hessian of the following functions. Identify stationary points and check whether these are local optima.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(i)
$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

(ii) $f(\mathbf{x}) = 8x_1 + 12x_2 + x_1^2 - 2x_2^2$

3. Calculate the *n*-th order Taylor expansion of the function f around x_0 .

(i)
$$f(x) = \cos x$$
, $n = 3$, $x_0 = 0$
(ii) $f(x) = \cos\left(\frac{1}{x}\right)$, $n = 2$

Matrix Norms I

Definition

Let \mathbb{K} be equal to \mathbb{C} or \mathbb{R} . A norm $\|\cdot\|$ on $\mathbb{K}^{n \times n}$, $n \in \mathbb{N}$, is called *matrix norm* if it is submultiplicative, i.e. for two $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{n \times n}$, it holds

 $\|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\|\|\mathbf{B}\|.$

Definition

A matrix norm $\|\cdot\|$ is *consistent* with a vector norm $\|\cdot\|$ on \mathbb{K}^n if

 $\|\mathbf{A}\| \leq \|\mathbf{A}\| \|\mathbf{x}\|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for every $\mathbf{A} \in \mathbb{K}^{n \times n}$ and $\mathbf{x} \in \mathbb{K}^{n}$.

Matrix Norms II

Examples

Frobenius norm:

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i}^{n} \sum_{j}^{n} |a_{ij}|^2} = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})$$

Induced norms (consistent!):

$$\|\mathbf{A}\|_p = \sup_{\|m{x}\|_p=1} \|\mathbf{A}m{x}\|_p$$

$$(p = 1, 2, \ldots, \infty)$$

Condition of Matrix Inversion

Relative error:

$$rac{\|oldsymbol{x}- ilde{oldsymbol{x}}\|_{oldsymbol{
ho}}}{\|oldsymbol{x}\|_{oldsymbol{
ho}}} \leq \kappa rac{\|oldsymbol{b}- ilde{oldsymbol{b}}\|_{oldsymbol{
ho}}}{\|oldsymbol{b}\|_{oldsymbol{
ho}}}$$

For
$$p=2$$
:
 $\kappa = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2 = rac{\sigma_{\max}}{\sigma_{\min}}$

4. Suppose that a function f of two variables is poorly scaled at the solution x^* . Write the Taylor expansion of f around x^* and use it to show that the Hessian $\nabla^2 f$ is ill-conditioned.

5. What can you say about the convergence rates of the following sequences?

(i)
$$x_k = \frac{1}{k}$$

(ii) $x_k = 1 + (\frac{1}{2})^{2^k}$
(iii) $x_k = \frac{1}{k!}$
(iv) $x_k = \begin{cases} (\frac{1}{4})^{2^k}, & k \text{ even}, \\ x_{k-1}/k, & k \text{ odd.} \end{cases}$

6. Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.