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Some terminology

I variables, objective function

I constrained optimization: (in)equality constraints, feasible set

I discrete vs. continuous optimization

I local vs. global optimization

I stochastic vs. deterministic optimization

I convex vs. nonconvex optimization

I strong, weak, isolated optima



The optimization tree

Source: http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/index.html



Concepts of local optimization

Theorem (Taylor in 1D)
Given a function f : R 7→ R. Suppose that in an open interval
containing x0, f is continuously differentiable n + 1 times, then for
each x in this interval

f (x) =
n∑

k=0

f (k)(x0)

k!
(x − x0)

k + Rn+1(x),

where the error term Rn+1(x) satisfies

Rn+1(x) =
f (k)(ξ)

k!
(x − x0)

k

for some ξ ∈ [x0, x).



Concepts of local optimization
Example:
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Concepts of local optimization

Basic idea:
Construct sequence {xk} of points in feasible set such that
objective function f (xk) decreases (monotonically) as k →∞.

Two strategies:
I Line search

I descent direction fixed (per iteration): negative gradient,
Newton step, Quasi-Newton step, conjugate directions

I distance variable ⇒ one-dimensional subproblem
I Trust region

I direction variable
I maximal distance = size of trust region fixed (per iteration)



Conditions of optimality

Convention:
optimization = minimization

I necessary:
I x∗ stationary ⇔ ”f ′(x∗) = 0”
I Hessian positive semidefinite ⇔ ”f ′′(x∗) ≥ 0”

I sufficient:
I Hessian positive definite ⇔ ”f ′′(x∗) > 0” (x∗ strong)
I f and feasibility region convex (x∗ global)



Scaling

poor better



Rates of Convergence

I Q-convergence
I sublinear, superlinear
I quadratic
I . . .

I R-convergence



Exercises

1. Are the following matrices positive definite or positive
semidefinite?

(i) A =

 1 −1 0
−1 2 1
0 −1 1



(ii) B =

(
3 5
12 20

)

(iii) C =

(
0 1
1 0

)



Exercises

2. Compute gradient and Hessian of the following functions.
Identify stationary points and check whether these are local optima.

(i) f (x) = 100(x2 − x2
1 )2 + (1− x1)

2

(ii) f (x) = 8x1 + 12x2 + x2
1 − 2x2

2



Exercises

3. Calculate the n-th order Taylor expansion of the function f
around x0.

(i) f (x) = cos x , n = 3, x0 = 0

(ii) f (x) = cos
(

1
x

)
, n = 2



Matrix Norms I

Definition
Let K be equal to C or R. A norm ‖ · ‖ on Kn×n, n ∈ N, is called
matrix norm if it is submultiplicative, i.e. for two A,B ∈ Kn×n, it
holds

‖AB‖ ≤ ‖A‖‖B‖.

Definition
A matrix norm ‖ · ‖ is consistent with a vector norm ‖ · ‖ on Kn if

‖A‖ ≤ ‖A‖‖x‖

for every A ∈ Kn×n and x ∈ Kn.



Matrix Norms II

Examples
I Frobenius norm:

‖A‖F =

√√√√ n∑
i

n∑
j
|aij |2 = tr(A>A)

I Induced norms (consistent!):

‖A‖p = sup
‖x‖p=1

‖Ax‖p

(p = 1, 2, . . . ,∞)



Condition of Matrix Inversion

Relative error:
‖x − x̃‖p
‖x‖p

≤ κ‖b − b̃‖p
‖b‖p

I b, b̃: true, disturbed right-hand side
I x, x̃: true, erroneous solution
I κ = ‖A‖p‖A−1‖p: condition number

For p = 2:
κ = ‖A‖2‖A−1‖2 =

σmax
σmin



Exercises

4. Suppose that a function f of two variables is poorly scaled at
the solution x∗. Write the Taylor expansion of f around x∗ and use
it to show that the Hessian ∇2f is ill-conditioned.



Exercises

5. What can you say about the convergence rates of the following
sequences?

(i) xk = 1
k

(ii) xk = 1 +
(

1
2

)2k

(iii) xk = 1
k!

(iv) xk =


(

1
4

)2k

, k even,
xk−1/k, k odd.



Exercises

6. Suppose that f is a convex function. Show that the set of global
minimizers of f is a convex set.


