Numerical Optimization
 Exercise I

Jonathan Balzer

Geometric Modeling and Scientific Visualization Center King Abdullah University of Science and Technology

Some terminology

- variables, objective function
- constrained optimization: (in)equality constraints, feasible set
- discrete vs. continuous optimization
- local vs. global optimization
- stochastic vs. deterministic optimization
- convex vs. nonconvex optimization
- strong, weak, isolated optima

The optimization tree

Source: http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/index.html

Concepts of local optimization

Theorem (Taylor in 1D)
Given a function $f: \mathbb{R} \mapsto \mathbb{R}$. Suppose that in an open interval containing x_{0}, f is continuously differentiable $n+1$ times, then for each x in this interval

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n+1}(x)
$$

where the error term $R_{n+1}(x)$ satisfies

$$
R_{n+1}(x)=\frac{f^{(k)}(\xi)}{k!}\left(x-x_{0}\right)^{k}
$$

for some $\xi \in\left[x_{0}, x\right)$.

Concepts of local optimization

Example:

Concepts of local optimization

Basic idea:
Construct sequence $\left\{x_{k}\right\}$ of points in feasible set such that objective function $f\left(x_{k}\right)$ decreases (monotonically) as $k \rightarrow \infty$.

Two strategies:

- Line search
- descent direction fixed (per iteration): negative gradient, Newton step, Quasi-Newton step, conjugate directions
- distance variable \Rightarrow one-dimensional subproblem
- Trust region
- direction variable
- maximal distance $=$ size of trust region fixed (per iteration)

Conditions of optimality

Convention:
optimization $=$ minimization

- necessary:
- x^{*} stationary $\Leftrightarrow " f^{\prime}\left(x^{*}\right)=0 "$
- Hessian positive semidefinite \Leftrightarrow " $f^{\prime \prime}\left(x^{*}\right) \geq 0$ "
- sufficient:
- Hessian positive definite \Leftrightarrow " $f^{\prime \prime}\left(x^{*}\right)>0$ " (x^{*} strong)
- f and feasibility region convex (x^{*} global)

Scaling

poor

better

Rates of Convergence

- Q-convergence
- sublinear, superlinear
- quadratic
- ...
- R-convergence

Exercises

1. Are the following matrices positive definite or positive semidefinite?
(i) $\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & -1 & 1\end{array}\right)$
(ii) $\mathbf{B}=\left(\begin{array}{cc}3 & 5 \\ 12 & 20\end{array}\right)$
(iii) $\mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Exercises

2. Compute gradient and Hessian of the following functions. Identify stationary points and check whether these are local optima.
(i) $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$
(ii) $f(\boldsymbol{x})=8 x_{1}+12 x_{2}+x_{1}^{2}-2 x_{2}^{2}$

Exercises

3. Calculate the n-th order Taylor expansion of the function f around x_{0}.
(i) $f(x)=\cos x, n=3, x_{0}=0$
(ii) $f(x)=\cos \left(\frac{1}{x}\right), n=2$

Matrix Norms I

Definition

Let \mathbb{K} be equal to \mathbb{C} or \mathbb{R}. A norm $\|\cdot\|$ on $\mathbb{K}^{n \times n}, n \in \mathbb{N}$, is called matrix norm if it is submultiplicative, i.e. for two $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{n \times n}$, it holds

$$
\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\| .
$$

Definition

A matrix norm $\|\cdot\|$ is consistent with a vector norm $\|\cdot\|$ on \mathbb{K}^{n} if

$$
\|\mathbf{A}\| \leq\|\mathbf{A}\|\|\boldsymbol{x}\|
$$

for every $\mathbf{A} \in \mathbb{K}^{n \times n}$ and $\boldsymbol{x} \in \mathbb{K}^{n}$.

Matrix Norms II

Examples

- Frobenius norm:

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i}^{n} \sum_{j}^{n}\left|a_{i j}\right|^{2}}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)
$$

- Induced norms (consistent!):

$$
\|\mathbf{A}\|_{p}=\sup _{\|\boldsymbol{x}\|_{p}=1}\|\mathbf{A} \boldsymbol{x}\|_{p}
$$

$$
(p=1,2, \ldots, \infty)
$$

Condition of Matrix Inversion

Relative error:

$$
\frac{\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|_{p}}{\|\boldsymbol{x}\|_{p}} \leq \kappa \frac{\|\boldsymbol{b}-\tilde{\boldsymbol{b}}\|_{p}}{\|\boldsymbol{b}\|_{p}}
$$

- $\boldsymbol{b}, \tilde{\boldsymbol{b}}$: true, disturbed right-hand side
- $\boldsymbol{x}, \tilde{\boldsymbol{x}}$: true, erroneous solution
- $\kappa=\|\mathbf{A}\|_{p}\left\|\mathbf{A}^{-1}\right\|_{p}$: condition number

For $p=2$:

$$
\kappa=\|\mathbf{A}\|_{2}\left\|\mathbf{A}^{-1}\right\|_{2}=\frac{\sigma_{\max }}{\sigma_{\min }}
$$

Exercises

4. Suppose that a function f of two variables is poorly scaled at the solution \boldsymbol{x}^{*}. Write the Taylor expansion of f around \boldsymbol{x}^{*} and use it to show that the Hessian $\nabla^{2} f$ is ill-conditioned.

Exercises

5. What can you say about the convergence rates of the following sequences?
(i) $x_{k}=\frac{1}{k}$
(ii) $x_{k}=1+\left(\frac{1}{2}\right)^{2^{k}}$
(iii) $x_{k}=\frac{1}{k!}$
(iv) $x_{k}=\left\{\begin{array}{lr}\left(\frac{1}{4}\right)^{2^{k}}, & k \text { even }, \\ x_{k-1} / k, & k \text { odd. }\end{array}\right.$

Exercises

6. Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.
